Quadratic gravity in (2+1)D with a topological Chern-Simons term

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 347213
(http://iopscience.iop.org/0305-4470/34/36/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.98
The article was downloaded on 02/06/2010 at 09:16

Please note that terms and conditions apply.

Quadratic gravity in (2+1)D with a topological Chern-Simons term

Antonio Accioly ${ }^{1}$, Hatsumi Mukai ${ }^{2}$ and Abel Azeredo ${ }^{1}$
${ }^{1}$ Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, SP, Brazil
${ }^{2}$ Departamento de Física, Fundação Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
E-mail: accioly@ift.unesp.br

Received 5 April 2001
Published 31 August 2001
Online at stacks.iop.org/JPhysA/34/7213

Abstract

Three-dimensional quadratic gravity, unlike general relativity in ($2+1$) D, is dynamically nontrivial and has a well behaved nonrelativistic potential. Here we analyse the changes that occur when a topological Chern-Simons term is added to this theory. It is found that the harmless massive scalar mode of the latter gives rise to a troublesome massive spin- 0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin 2 . We also found that light deflection does not have the 'wrong sign' such as in the framework of three-dimensional quadratic gravity.

PACS numbers: $02.40 . \mathrm{Re}, 04.50 .+\mathrm{h}, 11.10 . \mathrm{Lm}, 98.80 . \mathrm{Hw}$

1. Introduction

As is well known, Einstein's equations also hold in three-dimensional space-time. However, the nature of gravity is quite different from that in four-dimensional space-time [1]. Indeed, three-dimensional general relativity is a generally covariant theory that has no propagating gravitational degrees of freedom, because in the absence of sources it is solved uniquely by flat space-time [2]. Curvature is created by sources, but only locally at their positions; elsewhere space-time remains flat. Consequently, there are no gravitons, and forces are not mediated by graviton exchange; rather, they are geometrical/topological in origin, arising from global properties of space-time, which is not Minkowskian in the large, even when it is locally flat [3,4].

When the four-derivative terms $\int R_{\mu \nu}^{2} \sqrt{g} \mathrm{~d}^{3} x$ and $\int R^{2} \sqrt{g} \mathrm{~d}^{3} x$ are included into threedimensional Einstein action, some significant changes occur. In this case, we have a class of effectively multimass models of gravity. In addition to the massless excitations of the field which, incidentally, are non-propagating [5] such as in three-dimensional general relativity,
there are now-for the general amount of the two new terms-massive spin-2 and massive scalar excitations. Quadratic gravity in (2+1)D is also locally nontrivial and has an extremely well behaved potential [6]. Besides, within the context of the same a gravitational force is exerted on a slowly moving test particle [7]. The expression for this force greatly resembles that of a straight $U(1)$-gauge cosmic string in the framework of linearized quadratic gravity in four-dimensions [8]. On the other hand, light deflection has the 'wrong sign' in the framework of this theory [9]. In other words, a light ray is deflected upward instead of downward as its (3+1)D counterpart.

Our aim here is to examine how these properties are modified when a topological ChernSimons term is added to the Lagrangian related to ($2+1$)-dimensional quadratic gravity.

The plan of this work is as follows. In section 2 we present a discussion on the powercounting renormalizability of the above theory. We also find the expression concerning its nonrelativistic potential. In section 3 we show that the massless excitation is not a dynamical degree of freedom. We study, in section 4, the gravitational force exerted on a slowly moving test particle as well as the deflections of light rays. Final remarks comprise section 5. In our notation the signature is $(+--)$. the curvature tensor is defined by $R^{\alpha}{ }_{\beta \gamma \delta}=-\partial_{\delta} \Gamma^{\alpha}{ }_{\beta \gamma}+\cdots$ and the Ricci tensor by $R=g^{\mu \nu} R_{\mu \nu}$, where $g_{\mu \nu}$ is the metric tensor. Natural units are used throughout.

2. Causality, power-counting renormalizability and effective nonrelativistic potential

The Lagrangian for quadratic-Chern-Simons gravity in (2+1)D can be cast in the form
$\mathcal{L}=-\frac{2 R \sqrt{g}}{\kappa^{2}}+\frac{\varepsilon^{\mu \nu \lambda}}{\mu} \Gamma^{\rho}{ }_{\sigma \lambda}\left(\partial_{\mu} \Gamma^{\sigma}{ }_{\rho \nu}+\frac{2}{3} \Gamma^{\sigma}{ }_{\omega \mu} \Gamma^{\omega}{ }_{\nu \sigma}\right)+\left(\frac{\alpha}{2} R^{2}+\frac{\beta}{2} R_{\mu \nu}^{2}\right) \sqrt{g}$
where α and β are constants with dimension L, κ^{2} is a suitable constant with dimension L which is not necessarily related to the Einstein's constant in four dimensions and μ is a dimensionless parameter. Here $\varepsilon^{012}=+1$. To find the graviton propagator we need the bilinear part of (1). This is obtained by decomposing the metric $g_{\mu \nu}$ as

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu} \tag{2}
\end{equation*}
$$

where $\eta_{\mu \nu}$ is the Minkowski metric, and inserting (2) into (1). Let $\overline{\mathcal{L}}$ be the resulting Lagrangian. Since our theory is gauge-invariant, we add to $\overline{\mathcal{L}}$ the gauge-fixing Lagrangian

$$
\mathcal{L}_{\mathrm{gf}}=-\lambda_{1} A_{\nu}^{2}-\frac{b}{4}\left[\lambda_{2}\left(A_{, \mu}^{\mu}\right)^{2}+\lambda_{3} F_{\mu \nu}^{2}\right]
$$

where λ_{1}, λ_{2} and λ_{3} are gauge-parameters, $A^{\mu} \equiv h_{\nu, \nu}^{\mu \nu}, F_{\mu \nu} \equiv A_{\mu, \nu}-A_{\nu, \mu}$ and $b \equiv \frac{\beta \kappa^{2}}{2}$. This is the Lagrangian corresponding to the Julve-Tonin gauge [10]. Therefore, $\overline{\overline{\mathcal{L}}} \equiv \overline{\mathcal{L}}+\mathcal{L}_{\text {gf }}$ can be written as $\overline{\overline{\mathcal{L}}}=h^{\mu \nu} \mathcal{O}_{\mu \nu, \rho \sigma} h^{\rho \sigma}$. Expanding now the operator \mathcal{O} in the basis $\left\{P^{1}, P^{2}, P^{0}, \bar{P}^{0}, \overline{\bar{P}}^{0}, P\right\}$, whereupon [11]

$$
P_{\mu \nu, \rho \sigma} \equiv \frac{\square \partial^{\lambda}}{4}\left[\varepsilon_{\mu \lambda \rho} \theta_{\nu \sigma}+\varepsilon_{\mu \lambda \sigma} \theta_{\nu \rho}+\varepsilon_{\nu \lambda \rho} \theta_{\mu \sigma}+\varepsilon_{\nu \lambda \sigma} \theta_{\mu \rho}\right]
$$

where $\theta_{\mu \nu} \equiv \eta_{\mu \nu}-\frac{k_{\mu} k_{v}}{k^{2}}$ is the usual transverse vector projection operator and $P^{1}, P^{2}, P^{0}, \bar{P}^{0}$, $\overline{\bar{P}}^{0}$ are the three-dimensional Barnes-Rivers operators [12], we obtain

$$
\begin{aligned}
\mathcal{O}=-k^{2}\left(\lambda_{1}\right. & \left.+\lambda_{3} \frac{b}{2} k^{2}\right) P^{1}+k^{2}\left(k^{2} \frac{b}{2}-1\right) P^{2} \\
& +\left[k^{2}+b k^{4}\left(\frac{3}{2}+4 c\right)\right] P^{0}-k^{2}\left(\frac{b}{2} \lambda_{2} k^{2}+2 \lambda_{1}\right) \bar{P}^{0}+\frac{P}{M} .
\end{aligned}
$$

Here $c \equiv \frac{\alpha}{\beta}$ and $M \equiv \frac{\mu}{\kappa^{2}}$. The propagator is then given by

$$
\begin{align*}
& \mathcal{O}^{-1}=\frac{-2}{k^{2}\left[2 \lambda_{1}+b \lambda_{3} k^{2}\right]} P^{1}+\left[-\frac{1}{k^{2}}+\frac{1}{1+\frac{1}{2} b M_{2}^{2}} \frac{1}{k^{2}-M_{2}^{2}}+\frac{1}{1+\frac{1}{2} b M_{1}^{2}} \frac{1}{k^{2}-M_{1}^{2}}\right] P^{2} \\
&+\left[\frac{1}{k^{2}}-\frac{1}{k^{2}-m^{2}}\right] P^{0}-\frac{1}{k^{2}\left[2 \lambda_{1}+\lambda_{2} \frac{b}{2} k^{2}\right]} \bar{P}^{0} \\
&-\left[\frac{4}{b^{2} M\left(M_{1}^{2}-M_{2}^{2}\right)}\left(\frac{1}{k^{2}-M_{1}^{2}}-\frac{1}{k^{2}-M_{2}^{2}}\right) \frac{1}{k^{4}}\right] P \tag{3}
\end{align*}
$$

where

$$
\begin{aligned}
M_{1}^{2} & \equiv\left(\frac{2}{b^{2} M^{2}}\right)\left[1+b M^{2}+\sqrt{1+2 b M^{2}}\right] \\
M_{2}^{2} & \equiv\left(\frac{2}{b^{2} M^{2}}\right)\left[1+b M^{2}-\sqrt{1+2 b M^{2}}\right] \\
m^{2} & \equiv \frac{-1}{b\left(\frac{3}{2}+4 c\right)}
\end{aligned}
$$

If we do not want tachyons in the dynamical field we may choose, for instance, $b>0$ and $\left(\frac{3}{2}+4 c\right)<0$. In this case the theory is causal at the tree level. In this vein we assume from now on $m^{2}, M_{1}^{2}, M_{2}^{2}$ and $M^{2}>0$.

Since the coefficients of P^{2} and P^{0} in (3) behave asymptotically as k^{-6} and k^{-4} respectively, quadratic-Chern-Simons gravity is power-counting renormalizable.

The effective nonrelativistic potential for this model can be computed from the expression

$$
\begin{equation*}
U(\boldsymbol{r})=\frac{1}{4 \tilde{m}^{2}} \frac{1}{(2 \pi)^{2}} \int \mathrm{~d}^{2} \boldsymbol{k} \mathcal{M}_{\mathrm{NR}} \mathrm{e}^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}} \tag{4}
\end{equation*}
$$

where $\mathcal{M}_{\mathrm{NR}}$ is the nonrelativistic limit of the Feynman amplitude for the process $S+S \rightarrow S+S$, where S denotes a spinless boson of mass \tilde{m}. The invariant amplitude for this process is given by

$$
\mathcal{M}=V^{\mu \nu}\left(p,-p^{\prime}\right) \mathcal{O}_{\mu \nu, \rho \sigma}^{-1} V^{\rho \sigma}\left(q,-q^{\prime}\right)
$$

where

$$
V_{\mu \nu}\left(p, p^{\prime}\right)=\frac{1}{2} \kappa\left[p_{\mu} p_{\nu}^{\prime}+p_{\nu} p_{\mu}^{\prime}-\eta_{\mu \nu}\left(p \cdot p^{\prime}+\tilde{m}^{2}\right)\right]
$$

is the vertex function for the trilinear coupling $\mathrm{g}(k)-\phi(p)-\phi\left(p^{\prime}\right)$. Here all momenta are supposed to be incoming. Thence,

$$
\begin{aligned}
\mathcal{M}=\kappa^{2}\left[-\frac{1}{2 k^{2}}\right. & \left.+\frac{1}{b M_{2}^{2}+2} \frac{1}{k^{2}-M_{2}^{2}}+\frac{1}{b^{2} M_{1}^{2}+2} \frac{1}{k^{2}-M_{1}^{2}}\right] \\
& \times\left[(p \cdot q)\left(p^{\prime} \cdot q^{\prime}\right)+\left(p \cdot q^{\prime}\right)\left(p^{\prime} \cdot q\right)+p \cdot p^{\prime}\left(\tilde{m}^{2}-q \cdot q^{\prime}\right)+\left(\tilde{m}^{2}-p \cdot p^{\prime}\right) q \cdot q^{\prime}\right. \\
& \left.+\frac{3}{2}\left(\tilde{m}^{2}-q \cdot q^{\prime}\right)\left(\tilde{m}^{2}-p \cdot p^{\prime}\right)-\frac{1}{4}\left(3 \tilde{m}^{2}-p \cdot p^{\prime}\right)\left(3 \tilde{m}^{2}-q \cdot q^{\prime}\right)\right] \\
& +\frac{\kappa^{2}}{8}\left\{\left(3 \tilde{m}^{2}-p \cdot p^{\prime}\right)\left(3 \tilde{m}^{2}-q \cdot q^{\prime}\right)\left[\frac{1}{k^{2}}-\frac{1}{k^{2}-m^{2}}\right]\right\}
\end{aligned}
$$

and
$\mathcal{M}_{\mathrm{NR}}=\kappa^{2} \tilde{m}^{4}\left[\frac{1}{2} \frac{1}{\boldsymbol{k}^{2}+m^{2}}-\frac{1}{2+b M_{2}^{2}} \frac{1}{\boldsymbol{k}^{2}+M_{2}^{2}}-\frac{1}{2+b M_{1}^{2}} \frac{1}{\boldsymbol{k}^{2}+M_{1}^{2}}\right]$.

Inserting (5) into (4) and performing the integration yields

$$
U(r)=2 \tilde{m}^{2} \bar{G}\left[K_{0}(r m)-\frac{1}{1+\frac{1}{2} b M_{1}^{2}} K_{0}\left(r M_{1}\right)-\frac{1}{1+\frac{1}{2} b M_{2}^{2}} K_{0}\left(r M_{2}\right)\right]
$$

where $\bar{G} \equiv \frac{\kappa^{2}}{32 \pi}$ and K_{0} is the modified Bessel function of the order of zero.
Consequently, the potential is given by the expression

$$
V(r)=2 \tilde{m} \bar{G}\left[K_{0}(r m)-\frac{1}{1+\frac{1}{2} b M_{1}^{2}} K_{0}\left(r M_{1}\right)-\frac{1}{1+\frac{1}{2} b M_{2}^{2}} K_{0}\left(r M_{2}\right)\right] .
$$

Note that $V(r)$ behaves as

$$
2 \tilde{m} \bar{G} \ln \left(\frac{M_{1}^{1+\frac{1}{2} b M_{1}^{2}} M_{2}^{1+\frac{1}{2} b M_{2}^{2}}}{m}\right)
$$

at the origin and as

$$
2 \tilde{m} \bar{G}\left[\sqrt{\frac{\pi}{2 m r}} \mathrm{e}^{-r m}-\frac{1}{1+\frac{1}{2} b M_{1}^{2}} \sqrt{\frac{\pi}{2 M_{1} r}} \mathrm{e}^{-M_{1} r}-\frac{1}{1+\frac{1}{2} b M_{2}^{2}} \sqrt{\frac{\pi}{2 M_{2} r}} \mathrm{e}^{-M_{2} r}\right]
$$

asymptotically. Two comments are in order here:
(i) Unlike the Newtonian potential $V_{N}=2 G \tilde{m} \ln \frac{r_{0}}{r_{1}}$ which has a logarithmic singularity at the origin and is unbounded at infinity, the potential concerning quadratic-Chern-Simons gravity in $(2+1) \mathrm{D}$ is extremely well behaved: it is finite at the origin and zero at infinity.
(ii) $V(r) \rightarrow 0$ as α and $\beta \rightarrow 0$, confirming in this way the fact that the standard correspondence of Einstein-Chern-Simons gravity in 3D with Newton's theory breaks down [13,14].

And, of course,

$$
\begin{equation*}
\kappa h_{00}=2 V . \tag{6}
\end{equation*}
$$

3. The massless excitation is non-propagating

Let us now show that the massless excitation is not a dynamical degree of freedom. To do that we couple the propagator to external conserved currents, $T^{\mu \nu}$, compatible with the symmetries of the theory and afterwards we compute the residue of the current-current amplitude at the pole $k^{2}=0$. The transition amplitude can be cast in the form

$$
\mathcal{A}=\mathrm{g}^{2} T^{\mu \nu} \mathcal{O}_{\mu \nu, \rho \sigma} T^{\rho \sigma}
$$

where g is the effective coupling constant of the theory. We expand now the sources in a suitable basis. The set of independent vectors in momentum space,

$$
k^{\mu} \equiv\left(k^{0}, \boldsymbol{k}\right) \quad \tilde{k}^{\mu} \equiv\left(k^{0},-\boldsymbol{k}\right) \quad \varepsilon^{\mu} \equiv(0, \vec{\epsilon})
$$

where $\vec{\epsilon}$ is a unit vector orthogonal to k, serves our purpose. Accordingly, the symmetric current $T^{\mu \nu}(k)$ can be written as

$$
T^{\mu \nu}=a k^{\mu} k^{\nu}+b \tilde{k}^{\mu} \tilde{k}^{\nu}+c \varepsilon^{\mu} \varepsilon^{\nu}+d k^{(\mu} \tilde{k}^{\nu)}+e k^{(\mu} \varepsilon^{\nu)}+f \tilde{k}^{(\mu} \varepsilon^{\nu)} .
$$

The current conservation, $k_{\mu} T^{\mu \nu}=0$, gives the following constraints for the coeffeicients a, b, e and f :

$$
\begin{aligned}
& a k^{2}+\left(k_{0}^{2}+k^{2}\right) \frac{d}{2}=0 \\
& b\left(k_{0}^{2}+k^{2}\right)+d \frac{k^{2}}{2}=0 \\
& e k^{2}+f\left(k_{0}^{2}+k^{2}\right)=0
\end{aligned}
$$

If we saturate the indices of $T^{\mu \nu}$ with momenta k_{μ}, we obtain the equation $k_{\mu} k_{\nu} T^{\mu \nu}=0$, which yields a consistency relation for the coefficients a, b and d

$$
a k^{4}+b\left(k_{0}^{2}+\boldsymbol{k}^{2}\right)^{2}+d k^{2}\left(k_{0}^{2}+\boldsymbol{k}^{2}\right)=0
$$

Hence,

$$
\left.\operatorname{Res} \mathcal{A}\right|_{k^{2}=0}=\mathrm{g}^{2}\left[c^{2}-c^{2}\right]_{k^{2}=0}=0
$$

implying that the massless excitation is non-propagating.

4. Gravitational acceleration and gravitational deflection of light rays

Using the results found in the last two sections we shall now study the following issues:
(i) gravitational force exerted on a slowly moving test particle;
(ii) gravitational deflection of light rays.

4.1. Gravitational acceleration

In the weak-field approximation, the gravitational acceleration $\gamma^{k}=\mathrm{d} v^{k} / \mathrm{d} t$ of a slowly moving test particle is given by

$$
\gamma^{k}=-\kappa\left[h_{0,0}^{k}-\frac{1}{2} h_{00}^{, k}\right]
$$

Since our field is time independent, this equation reduces to

$$
\begin{equation*}
\gamma^{k}=-\frac{\kappa}{2} h_{00, k} \tag{7}
\end{equation*}
$$

Inserting (6) into (7), we get

$$
\begin{equation*}
\gamma^{k}=-2 \bar{G} \tilde{m} \frac{x^{k}}{r}\left[\frac{M_{1} K_{1}\left(r M_{1}\right)}{1+\frac{b M_{1}^{2}}{2}}+\frac{M_{2} K_{1}\left(r M_{2}\right)}{1+\frac{b M_{2}^{2}}{2}}-m K_{1}(r m)\right] . \tag{8}
\end{equation*}
$$

In the absence of the Chern-Simons term $(M \rightarrow \infty)$, (8) reduces to

$$
\begin{equation*}
\gamma^{k}=-2 \tilde{m} \tilde{G} \frac{x^{k}}{r}\left[N K_{1}(r N)-m K_{1}(r m)\right] \tag{9}
\end{equation*}
$$

with $N^{2} \equiv \frac{2}{b}$. Since $\mathrm{d}\left[x K_{1}(x)\right] / \mathrm{d} x=-x K_{0}(x)$ and $K_{0}(x)>0$ it follows that $x K_{1}(x)$ is a positive monotonically function in the range $0 \leqslant x<\infty$. Accordingly, the gravitational force related to (9) is everywhere attractive if $N<m$, is repulsive if $N>m$ and vanishes if $N=m$. From the preceding analysis we come to the conclusion that 'antigravity' is possible in the framework of $(2+1)$ D quadratic-Chern-Simons gravity.

4.2. Light deflection

Let us consider now the interaction between a fixed source and a light ray. The associated energy-momentum tensors will be designated respectively as $T^{\mu \nu}$ and $F^{\mu \nu}$. The currentcurrent amplitude for this process is given by

$$
\mathcal{A}=\mathrm{g}^{2} T^{\mu \nu} \mathcal{O}_{\mu \nu, \rho \sigma}^{-1} F^{\mu \sigma} .
$$

But on mass-shell $k_{\mu} T^{\mu \nu}=0$ and $k_{\mu} F^{\mu \nu}=0$, implying that only P^{2} and P^{0} will give a nonnull contribution to the current-current amplitude. Therefore

$$
\begin{gathered}
\mathcal{A}=\mathrm{g}^{2} T^{\mu \nu} F^{\rho \sigma} \\
{\left[\left(-\frac{1}{k^{2}}+\frac{1}{1+\frac{1}{2} b M_{2}^{2}} \frac{1}{k^{2}-M_{2}^{2}}+\frac{1}{1+\frac{1}{2} b M_{1}^{2}} \frac{1}{k^{2}-M_{1}^{2}}\right) P^{2}\right.} \\
\left.+\left(\frac{1}{k^{2}}-\frac{1}{k^{2}-m^{2}}\right) P^{0}\right]_{\mu v, \rho \sigma} .
\end{gathered}
$$

Now, taking into account that [5]

$$
\begin{aligned}
& P_{\mu v, \rho \sigma}^{2}=\frac{1}{2}\left(\eta_{\mu \rho} \eta_{\nu \sigma}+\eta_{\mu \sigma} \eta_{\nu \rho}-\eta_{\mu \nu} \eta_{\rho \sigma}\right)-\left[P^{1}+\frac{1}{2} \bar{P}^{0}-\frac{1}{2} \overline{\bar{P}}^{0}\right]_{\mu \nu, \rho \sigma} \\
& P_{\mu \nu, \rho \sigma}^{0}=\frac{1}{2} \eta_{\mu \nu} \eta_{\rho \sigma}-\frac{1}{2}\left[\bar{P}^{0}+\overline{\bar{P}}^{0}\right]_{\mu \nu, \rho \sigma}
\end{aligned}
$$

and recalling that the massless excitation is non-propagating, we promptly obtain

$$
\mathcal{A}=\mathrm{g}^{2} T_{00} F_{00}\left(\frac{1}{1+\frac{1}{2} b M_{2}^{2}} \frac{1}{k^{2}-M_{2}^{2}}+\frac{1}{1+\frac{1}{2} b M_{1}^{2}} \frac{1}{k^{2}-M_{1}^{2}}\right) .
$$

Hence, the light ray will be deflected downward as usual.

5. Final remarks

A comparison between three-dimensional quadratic gravity and quadratic-Chern-Simons gravity in $(2+1) \mathrm{D}$ shows that the harmless massive scalar mode of the former becomes a troublesome massive spin-0 ghost in the framework of the latter, while the massive spin-2 ghost related to quadratic gravity in $(2+1) \mathrm{D}$ is now replaced by two massive physical particles both of spin 2. On the other hand, light deflection has the 'wrong sign' within the context of three-dimensional higher-derivative gravity [9]. The addition of a topological massive term to the latter 'repairs' the aforementioned sign.

We list in the following some interesting features of the theory of quadratic gravity with a Chern-Simons term in (2+1)D:
(i) the nonrelativistic potential is extremely well behaved;
(ii) the massless excitation is non-propagating;
(iii) 'antigravity' is possible.

To conclude we raise an interesting question: Is the photon propagation dispersive in the framework of (2+1)D quadratic gravity with a Chern-Simons term such as in quadratic gravity in (3+1)D [15-17]? This issue will be discussed elsewhere.

Acknowledgment

A Azeredo is very grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support.

References

[1] Giddings S, Abott J and Kuchǎr K 1984 Gen. Rel. Grav. 16751
[2] Jackiw R 1985 Nucl. Phys. B 252343
[3] Deser S, Jackiw R and 't Hooft G 1984 Ann. Phys (N.Y.) 152220.
[4] Gerbert P and Jackiw R 1989 Commun. Math. Phys. 124229
[5] Accioly A, Azeredo A and Mukai H 2001 Propagator, tree-level unitarity and effective nonrelativistic potential for higher-derivative gravity in D dimensions, to be published
[6] Accioly A, Mukai H and Azeredo A 2001 Class. Quantum Gravity 18 L31
[7] Accioly A, Mukai H and Azeredo A 2001 Mod. Phys. Lett. A 161449
[8] Linet B and Teyssandier P 1992 Class. Quantum Gravity 9159
[9] Accioly A, Azeredo A and Mukai H 2001 Phys. Lett. A 279169
[10] Julve J and Tonin M 1978 Nuovo Cimento B 46137
[11] Accioly A, Mukai H and Azeredo A 2000 Phys. Lett. B 495394
[12] Antoniadis I and Tomboulis E 1986 Phys. Rev. D 332756
[13] Deser S, Jackiw R and Templeton S 1982 Phys. Rev. Lett. 48475
[14] Deser S, Jackiw R and Templeton S 1982 Ann. Phys. NY 140372
[15] Accioly A, Azeredo A, Mukai H and de Rey Neto E 2000 Prog. Theor. Phys. 104103
[16] Accioly A, Mukai H and Azeredo A 2000 Nuovo Cimento B (Note Brevi) 1151235
[17] Accioly A and Blas H 2001 Gravitational rainbow Phys. Rev. D, at press

